
QUANTUM GEOMETRY AND ITS
APPLICATIONS

Abhay Ashtekar1 and Jerzy Lewandowski2

1. Institute for Gravitational Physics and Geometry
Physics Department, Penn State, University Park, PA 16802-6300

2. Instytut Fizyki Teoretycznej,
Uniwersytet Warszawski, ul. Hoża 69, 00-681 Warszawa, Poland
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1 Introduction

In general relativity the gravitational field is encoded in the Riemannian geometry
of space-time. Much of the conceptual compactness and mathematical elegance of
the theory can be traced back to this central idea. The encoding is also directly
responsible for the most dramatic ramifications of the theory: the big-bang, black
holes and gravitational waves. However, it also leads one to the conclusion that
space-time itself must end and physics must come to a halt at the big-bang and
inside black holes, where the gravitational field becomes singular. But this reasoning
ignores quantum physics entirely. When the curvature becomes large, of the order
of 1/`2

Pl = c3/G~, quantum effects dominate and predictions of general relativity
can no longer be trusted. In this ‘Planck regime’, one must use an appropriate
synthesis of general relativity and quantum physics, i.e., a quantum gravity theory.
The predictions of this theory are likely to be quite different from those of general
relativity. In the real, quantum world, evolution may be completely non-singular.
Physics may not come to a halt and quantum theory could extend classical space-
time.
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There are a number of different approaches to quantum gravity. One natural
avenue is to retain the interplay between gravity and geometry but now use quantum
Riemannian geometry in place of the standard, classical one. This is the key idea
underlying loop quantum gravity. There are several calculations which indicate that
the well-known failure of the standard perturbative approach to quantum gravity may
be primarily due to its basic assumption that space-time can be modelled as a smooth
continuum at all scales. In loop quantum gravity, one adopts a non-perturbative
approach. There is no smooth metric in the background. Geometry is not only
dynamical but quantum mechanical from ‘birth’. Its fundamental excitations turn
out to be 1-dimensional and polymer-like. The smooth continuum is only a coarse
grained approximation. While a fully satisfactory quantum gravity theory still awaits
us (in any approach), detailed investigations have been carried out to completion
in simplified models —called mini and midi-superspaces. They show that quantum
space-time does not end at singularities. Rather, quantum geometry serves as a
‘bridge’ to another large classical space-time.

This summary will focus on structural issues from a mathematical physics per-
spective. Complementary perspectives and further details can be found in articles on
loop quantum gravity, canonical formalism, quantum cosmology, black hole thermo-
dynamics and spin foams.

2 Basic Framework

The starting point is a Hamiltonian formulation of general relativity based on spin
connections (Ashtekar, 1987). Here, the phase space Γ consists of canonically conju-
gate pairs (A,P), where A is a connection on a 3-manifold M and P a 2-form, both
of which take values in the Lie-algebra su(2). Since Γ can also be thought of as
the phase space of the SU(2) Yang-Mills theory, in this approach there is a unified
kinematic framework for general relativity which describes gravity and gauge theories
which describe the other three basic forces of Nature. The connection A enables one
to parallel transport chiral spinors (such as the left handed fermions of the standard
electro-weak model) along curves in M . Its curvature is directly related to the elec-
tric and magnetic parts of the space-time Riemann tensor. The dual P of P plays
a double role.1 Being the momentum canonically conjugate to A, it is analogous to
the Yang-Mills electric field. But (apart from a constant) it is also an orthonormal
triad (with density weight 1) on M and therefore determines the positive definite
(‘spatial’) 3-metric, and hence the Riemannian geometry of M . This dual role of P is
a reflection of the fact that now SU(2) is the (double cover of the) group of rotations
of the orthonormal spatial triads on M itself rather than of rotations in an ‘internal’
space associated with M .

To pass to quantum theory, one first constructs an algebra of ‘elementary’ func-

1The dual is defined via
∫

M
P ∧ ω =

∫
M

Pyω for any 1-form ω on M .
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tions on Γ (analogous to the phase space functions x and p in the case of a particle)
which are to have unambiguous operator analogs. The holonomies

he(A) := P exp −
∫

e

A (2.1)

associated with a curve/edge e on M is a (SU(2)-valued) configuration function on
Γ. Similarly, given a 2-surface S on M , and a su(2)-valued (test) function f on M ,

PS,f :=

∫

S

Tr (fP) (2.2)

is a momentum-function on Γ, where Tr is over the su(2) indices.2 The symplectic
structure on Γ enables one to calculate the Poisson brackets {he , PS,f}. The result is
a linear combination of holonomies and can be written as a Lie derivative,

{he, PS,f} = LXS,f
he , (2.3)

where XS,f is a derivation on the ring generated by holonomy functions, and can
therefore be regarded as a vector field on the configuration space A of connections.
This is a familiar situation in classical mechanics of systems whose configuration space
is a finite dimensional manifold. Functions he and vector fields XS,f generate a Lie
algebra. As in quantum mechanics on manifolds, the first step is to promote this
algebra to a quantum algebra by demanding that the commutator be given by i~
times the Lie bracket. The result is a ?-algebra a, analogous to the algebra generated
by operators exp iλx̂ and p̂ in quantum mechanics. By exponentiating the momentum
operators P̂S,f one obtains W, the analog of the quantum mechanical Weyl algebra
generated by exp iλx̂ and exp iµp̂.

The main task is to obtain the appropriate representation of these algebras. In
that representation, quantum Riemannian geometry can be probed through the mo-
mentum operators P̂S,f , which stem from classical orthonormal triads. As in quantum
mechanics on manifolds or simple field theories in flat space, it is convenient to divide
the task into two parts. In the first, one focuses on the algebra C generated by the
configuration operators ĥc and finds all its representations, and in the second one
considers the momentum operators P̂S,f to restrict the freedom.

C is called the holonomy algebra. It is naturally endowed with the structure of
an Abelian C? algebra (with identity), whence one can apply the powerful machin-
ery made available by the Gel’fand theory. This theory tells us that C determines
a unique compact, Hausdorff space Ā such that the C? algebra of all continuous
functions on A is naturally isomorphic to C. Ā is called the Gel’fand spectrum of

2For simplicity of presentation all fields are assumed to be smooth and curves/edges e and surfaces
S, finite and piecewise analytic in a specific sense. The extension to smooth curves and surfaces
was carried out by Baez and Sawin, Lewandowski and Thiemann, and Fleischhack. It is technically
more involved but the final results are qualitatively the same.
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C. It has been shown to consist of ‘generalized connections’ Ā defined as follows: Ā
assigns to any oriented edge e in M an element Ā(e) of SU(2) (a ‘holonomy’) such
that Ā(e−1) = [Ā(e)]−1; and, if the end point of e1 is the starting point of e2, then
Ā(e1 ◦ e2) = Ā(e1) · Ā(e2). Clearly, every smooth connection A is a generalized con-
nection. In fact, the space A of smooth connections has been shown to be dense in
Ā (with respect to the natural Gel’fand topology thereon). But Ā has many more
‘distributional elements’. The Gel’fand theory guarantees that every representation
of the C? algebra C is a direct sum of representations of the following type: The
underlying Hilbert space is H = L2(Ā, dµ) for some measure µ on Ā and (regarded
as functions on Ā) elements of C act by multiplication. Since there are many inequiv-
alent measures on Ā, there is a multitude of representations of C. A key question is
how many of them can be extended to representations of the full algebra a (or W)
without having to introduce any ‘background fields’ which would compromise diffeo-
morphism covariance. Quite surprisingly, the requirement that the representation be
cyclic with respect to a state which is invariant under the action of the (appropri-
ately defined) group Diff M of piecewise analytic diffeomorphisms on M singles out a
unique irreducible representation. This result was established for a by Lewandowski,
OkoÃlów, Sahlmann and Thiemann, and for W by Fleischhack. It is the quantum
geometry analog to the seminal results by Segal and others that characterized the
Fock vacuum in Minkowskian field theories. However, while that result assumes not
only Poincaré invariance but also specific (namely free) dynamics, it is striking that
the present uniqueness theorems make no such restriction on dynamics. The require-
ment of diffeomorphism invariance is surprisingly strong and makes the ‘background
independent’ quantum geometry framework surprisingly tight.

This representation had been constructed by Ashtekar, Baez and Lewandowski
some ten years before its uniqueness was established. The underlying Hilbert space
is given by H = L2(Ā, dµo) where µo is a diffeomorphism invariant, faithful, regular
Borel measure on Ā, constructed from the normalized Haar measure on SU(2). Typ-
ical quantum states can be visualized as follows. Fix: (i) a graph3 α on M , and, (ii)
a smooth function ψ on [SU(2)]n. Then, the function

Ψγ(Ā) := ψ(Ā(e1), . . . Ā(en)) (2.4)

on Ā is an element of H. Such states are said to be cylindrical with respect to the
graph α and their space is denoted by Cylα. These are ‘typical states’ in the sense
that Cyl := ∪α Cylα is dense in H. Finally, as ensured by the Gel’fand theory, the
holonomy (or configuration) operators ĥe act just by multiplication. The momentum
operators P̂S,f act as Lie-derivatives: P̂S,f Ψ = −i~LXS,f

Ψ.
Remark : Given any graph α in M , and a labelling of each of its edges by a non-

trivial irreducible representation of SU(2) (i.e., by a non-zero half integer j), one can
construct a finite dimensional Hilbert space Hα,~j which can be thought of as the state

3By a graph on M we mean a set of a finite number of embedded, oriented intervals called edges.
If two edges intersect, they do so only at one or both ends, called vertices.
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space of a spin system ‘living on’ the graph α. The full Hilbert space admits a simple
decomposition: H = ⊕α,~j Hα,~j. This is called the spin-network decomposition. The
geometric operators discussed in the next section leave eachHα,~j invariant. Therefore,
the availability of this decomposition greatly simplifies the task of analyzing their
properties.

3 Geometric Operators

In the classical theory, E := 8πGγP has the interpretation of an orthonormal triad
field (or a ‘moving frame’) on M (with density weight 1). Here γ is a dimension-
less, strictly positive number, called the Barbero-Immirzi parameter, which arises as
follows. Because of emphasis on connections, in the classical theory the first order
Palatini action is a more natural starting point than the second order Einstein-Hilbert
action. Now, there is a freedom to add a term to the Palatini action which vanishes
when Bianchi identities are satisfied and therefore does not change the equations of
motion. γ arises as the coefficient of this term. In some respects γ is analogous to
the θ parameter of Yang-Mills theory. Indeed, while theories corresponding to any
permissible values of γ are related by a canonical transformation classically, quantum
mechanically this transformation is not unitarily implementable. Therefore, although
there is a unique representation of the algebra a (or W) there is a 1-parameter family
of inequivalent representations of the algebra of geometric operators generated by
suitable functions of orthonormal triads E, each labelled by the value of γ. This
is a genuine quantization ambiguity. As with the θ ambiguity in QCD, the actual
value of γ in Nature has to be determined experimentally. The current strategy in
quantum geometry is to fix its value through a thought experiment involving black
hole thermodynamics (see below).

The basic object in quantum Riemannian geometry is the triad flux operator
ÊS,f := 8πGγ P̂S,f . It is self-adjoint and all its eigenvalues are discrete. To define

other geometric operators such as the area operator ÂS associated with a surface S
or a volume operator V̂R associated with a region R, one first expresses the corre-
sponding phase space functions in terms of the ‘elementary’ functions ESi,fi

using
suitable surfaces Si and test functions fi and then promotes ESi,fi

to operators. Even
though the classical expressions are typically non-polynomial functions of ESi,fi

, the
final operators are all well-defined, self-adjoint and with purely discrete eigenvalues.
Therefore, in the sense of the word used in elementary quantum mechanics (e.g. of
the hydrogen atom), one says that geometry is quantized. Because the theory has
no background metric or indeed any other background field, all geometric operators
transform covariantly under the action of the Diff M . This diffeomorphism covari-
ance makes the final expressions of operators rather simple. In the case of the area
operator, for example, the action of ÂS on a state Ψα (2.4) depends entirely on the
points of intersection of the surface S and the graph α and involves only right and left
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invariant vector fields on copies of SU(2) associated with edges of α which intersect
S. In the case of the volume operator V̂R, the action depends on the vertices of α
contained in R and, at each vertex, involves the right and left invariant vector fields
on copies of SU(2) associated with edges that meet at each vertex.

To display the explicit expressions of these operators, let us first define on Cylα
three basic operators Ĵ

(v,e)
j , with j ∈ {1, 2, 3}, associated with the pair consisting of

an edge e of α and a vertex v of e:

Ĵ
(v,e)
j Ψα(Ā) =

{
i d
dt
|t=0ψα(. . . , Ue(Ā) exp(tτj), . . .) if e begins at v

i d
dt
|t=0ψα(. . . , exp(−tτj)Ue(Ā), . . .) if e ends at v,

(3.5)

where τj denotes a basis in su(2) and ‘. . .’ stands for the rest of the arguments of Ψα

which remain unaffected. The quantum area operator As is assigned to a finite 2-
dimensional sub-manifold S in M . Given a cylindrical state we can always represent it
in the form (2.4) using a graph α adapted to S, such that every edge e either intersects
S at exactly one end point, or is contained in the closure S̄, or does not intersect S̄.
For each vertex v of the graph α which lies on S, the family of edges intersecting
v can be divided into 3 classes: edges {e1, ..., eu} lying on one side (say ‘above’) S,
edges {eu+1, ..., eu+d} lying on the other side (say ‘below’) and edges contained in S.
To each v we assign a generalized Laplace operator

∆S,v = −ηij

(
u∑

I=1

Ĵ
(v,eI)
i −

u+d∑
I=u+1

Ĵ
(v,eI)
i

)(
u∑

K=1

Ĵ
(v,eK)
j −

u+d∑
K=u+1

Ĵ
(v,eK)
j

)
, (3.6)

where ηij stands for −1
2

the Killing form on su(2). Now, the action of the quantum

area operator ÂS on Ψα is defined as follows

ÂSΨα = 4πγ`2
Pl

∑
v∈S

√
−∆S,vΨα. (3.7)

The quantum area operator has played the most important role in applications.
Its complete spectrum is known in a closed form. Consider arbitrary sets j

(u)
I , j

(d)
I

and j
(u+d)
I of half integers, subject to the condition

j
(u+d)
I ∈ {|j(u)

I − j
(d)
I |, |j(u)

I − j
(d)
I |+ 1, ..., j

(u)
I + j

(d)
I } , (3.8)

where I runs over any finite number of integers. The general eigenvalues of the area
operator are given by:

aS = 4πγ`2
Pl

∑
I

√
2j

(u)
I (j

(u)
I + 1) + 2j

(d)
I (j

(d)
I + 1)− j

(u+d)
I (j

(u+d)
I + 1) . (3.9)

On the physically interesting sector of SU(2)-gauge invariant subspace Hinv of H,
the lowest eigenvalue of ÂS —the area gap— depends on some global properties of
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S. Specifically, it ‘knows’ whether the surface is open, or a 2-sphere, or, if M is a
3-torus, a (non-trivial) 2-torus in M . Finally, on Hinv, one is often interested only in
the subspace of states Ψα where α has no edges which lie within a given surface S.
Then, the expression of eigenvalues simplifies considerably:

aS = 8πγ`2
Pl

∑
I

√
jI(jI + 1) . (3.10)

To display the action of the quantum volume operator V̂R, for each vertex v of a
given graph α, let us first define an operator q̂v on Cylα.

q̂v = (8πγ`2
Pl)

3 1

48

∑

e,e′,e′′
ε(e, e′, e′′)cijkĴ

(v,e)
i Ĵ

(v,e′)
j Ĵ

(v,e′′)
k , (3.11)

where e, e′ and e′′ run over the set of edges intersecting v, ε(e, e′, e′′) takes values
±1 or 0 depending on the orientation of the half-lines tangent to the edges at v,
[τi, τj] = ck

ijτk and the indices are raised by the tensor ηij. The action of the quantum
volume operator on a cylindrical state (2.4) is then given by

V̂RΨα = κo

∑
v∈R

√
|q̂v|.Ψα, (3.12)

Here κo is an overall constant, independent of a graph constant resulting from an
averaging.

The volume operator plays an unexpectedly important role in the definition of
both the gravitational and matter contributions to the scalar constraint operator
which dictates dynamics. Finally, a notable property of the volume operator is the
following. Let R(p, ε) be a family of neighborhoods of a point p ∈ M . Then, as
indicated above, V̂R(p,ε)Ψα = 0 if α has no vertex in the neighborhood. However, if α
has a vertex at p

lim
ε→0

V̂R(x,ε) Ψα

exists but is not necessarily zero. This is a reflection of the ‘distributional’ nature of
quantum geometry.

Remark: States Ψα ∈ Cyl have support only on the graph α. In particular, they
are simply annihilated by geometric operators such as ÂS and V̂R if the support of
the surface S and the region R does not intersect the support of α. In this sense the
fundamental excitations of geometry are 1-dimensional and geometry is ‘polymer-like’.
States Ψα where α is just a ‘small graph’ are highly quantum mechanical —like states
in QED representing just a few photons. Just as coherent states in QED require an
infinite superposition of such highly quantum states, to obtain a semi-classical state
approximating a given classical geometry, one has to superpose a very large number
of such elementary states. More precisely, in the Gel’fand triplet Cyl ⊂ H ⊂ Cyl?,
semi-classical states belong to the dual Cyl? of Cyl.

7



4 Applications

Since quantum Riemannian geometry underlies loop quantum gravity and spin-foam
models, all results obtained in these frameworks can be regarded as its applications.
Among these, there are two which have led to resolutions of long standing issues. The
first concerns black hole entropy, and the second, quantum nature of the big-bang.

4.1 Black holes

Seminal advances in fundamentals of black hole physics in the mid seventies sug-
gested that the entropy of large black holes is given by SBH = (ahor/4`

2
Pl), where

ahor is the horizon area. This immediately raised a challenge to potential quantum
gravity theories: Give a statistical mechanical derivation of this relation. For familiar
thermodynamic systems, a statistical mechanical derivation begins with an identi-
fication the microscopic degrees of freedom. For a classical gas, these are carried
by molecules; for the black body radiation, by photons and for a ferromagnet, by
Heisenberg spins. What about black holes? The microscopic building blocks can not
be gravitons because the discussion involves stationary black holes. Furthermore the
number of microscopic states is absolutely huge: some exp 1077 for a solar mass black
hole, a number that completely dwarfs the number of states of systems one normally
encounters in statistical mechanics. Where does this huge number come from? In
loop quantum gravity, this is the number of states of the quantum horizon geometry.

The idea behind the calculation can be heuristically explained using the It from
Bit argument, put forward by Wheeler in the nineties. Divide the black hole horizon
in to elementary cells, each with one Planck unit of area, `2

Pl and assign to each cell
two microstates. Then the total number of states N is given by N = 2n where
n = (ahor/`

2
Pl) is the number of elementary cells, whence entropy is given by S =

lnN ∼ ahor. Thus, apart from a numerical coefficient, the entropy (‘It ’) is accounted
for by assigning two states (‘Bit ’) to each elementary cell. This qualitative picture
is simple and attractive. However, the detailed derivation in quantum geometry has
several new features.

First, Wheeler’s argument would apply to any 2-surface, while in quantum geom-
etry the surface must represent a horizon in equilibrium. This requirement is encoded
in a certain boundary condition that the canonically conjugate pair (A,P) must sat-
isfy at the surface and plays a crucial role in the quantum theory. Second, the area of
each elementary cell is not a fixed multiple of `2

Pl but is given by (3.10), where I labels
the elementary cells and jI can be any half integers (such that the sum is within a
small neighborhood of the classical area of the black hole under consideration). Fi-
nally, the number of quantum states associated with an elementary cell labelled by
jI is not 2 but (2jI + 1).

The detailed theory of the quantum horizon geometry and the standard statistical
mechanical reasoning is then used to calculate the entropy and the temperature. For
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large black holes, the leading contribution to entropy is proportional to the horizon
area, in agreement with quantum field theory in curved space-times.4 However, as one
would expect, the proportionality factor depends on the Barbero-Immirzi parameter
γ and so far loop quantum gravity does not have an independent way to determine its
value. The current strategy is to determine γ by requiring that, for the Schwarzschild
black hole, the leading term agree exactly with Hawing’s semi-classical answer. This
requirement implies that γ is the root of algebraic equation and its value is given by
γ ≈ 0.2735. Now quantum geometry theory is completely fixed. One can calculate
entropy of other black holes, with angular momentum and distortion. A non-trivial
check on the strategy is that for all these cases, the coefficient in the leading order
term again agrees with Hawking’s semi-classical result.

The detailed analysis involves a number of structures of interest to mathematical
physics. First, the intrinsic horizon geometry is described by an U(1) Chern-Simons
theory on a punctured 2-sphere (the horizon), the level k of the theory being given
by k = ahor/4πγ `2

Pl. The punctures are simply the intersections of the excitations
of the polymer geometry in the bulk with the horizon 2-surface. Second, because
of the horizon boundary conditions, in the classical theory the gauge group SU(2)
is reduced to U(1) at the horizon. At each puncture, it is further reduced to the
discrete subgroup Zk of U(1), —sometimes referred to as a ‘quantum U(1) group’.
Third, the ‘surface phase space’ associated with the horizon is represented by a non-
commutative torus. Finally, the surface Chern-Simons theory is entirely unrelated
to the bulk quantum geometry theory but the quantum horizon boundary condition
requires that the spectrum of a certain operator in the Chern-Simons theory must be
identical to that of another operator in the bulk theory. The surprising fact is that
there is an exact agreement. Without this seamless matching, a coherent descriptions
of the quantum horizon geometry would not have been possible.

The main weakness of this approach to black hole entropy stems from the Barbero-
Immirzi ambiguity. The argument would be much more compelling if the value of
γ were determined by independent considerations, without reference to black hole
entropy.5 It’s primary strengths are two folds. First, the calculation encompasses all
realistic black holes —not just extremal or near-extremal— including the astrophys-
ical ones, which may be highly distorted. Hairy black holes of mathematical physics
and cosmological horizons are also encompassed. Second, in contrast to other ap-
proaches, one works directly with the physical, curved geometry around black holes
rather than with a flat space system which has the same number of states as the black
hole of interest.

4The sub-leading term − 1
2 ln (ahor/`2Pl) is a quantum gravity correction to Hawking’s semi-

classical result. This correction, with the −1/2 factor, is robust in the sense that it also arises
in other approaches.

5By contrast, for extremal black holes, string theory provides the correct coefficient without
any adjustable parameter. The AdS/CFT duality hypothesis (as well as another semi-quantitative)
arguments have been used to encompass certain black holes which are away from extremality. But
in these cases, it is not known if the numerical coefficient is 1/4 as in Hawking’s analysis.
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4.2 The big bang

Most of the work in physical cosmology is carried out using spatially homogeneous
and isotropic models and perturbations thereon. Therefore, to explore the quantum
nature of the big-bang, it is natural to begin by assuming these symmetries. Then the
space-time metric is determined simply by the scale factor a(t) and matter fields φ(t)
which depend only on time. Thus, because of symmetries, one is left with only a finite
number of degrees of freedom. Therefore, field theoretic difficulties are by-passed and
passage to quantum theory is simplified. This strategy was introduced already in the
late sixties and early seventies by DeWitt and Misner. Quantum Einstein’s equations
now reduce to a single differential equation of the type

∂2

∂a2
(f(a)Ψ(a, φ)) = const Ĥφ Ψ(a, φ) (4.13)

on the wave function Ψ(a, φ), where Ĥφ is the matter Hamiltonian and f(a) reflects
the freedom in factor ordering. Since the scale factor a vanishes at the big-bang, one
has to analyze the equation and its solutions near a = 0. Unfortunately, because
of the standard form of the matter Hamiltonian, coefficients in the equation diverge
at a = 0 and the evolution can not be continued across the singularity unless one
introduces unphysical matter or a new principle. A well-known example of new input
is the Hartle-Hawking boundary condition which posits that the universe starts out
without any boundary and a metric with positive definite signature and later makes
a transition to a Lorentzian metric.

Bojowald and others have shown that the situation is quite different in loop quan-
tum cosmology because quantum geometry effects make a qualitative difference near
the big-bang. As in older quantum cosmologies, one carries out a symmetry reduction
at the classical level. The final result differs from older theories only in minor ways.
In the homogeneous, isotropic case, the freedom in the choice of the connection is
encoded in a single function c(t) and, in that of the momentum/triad, in another
function p(t). The scale factor is given by a2 = |p|. (The variable p itself can assume
both signs; positive if the triad is left handed and negative if it is right handed. p
vanishes at degenerate triads which are permissible in this approach.) The system
again has only a finite number of degrees of freedom. However, quantum theory turns
out to be inequivalent to that used in older quantum cosmologies.

This surprising result comes about as follows. Recall that in quantum geometry,
one has well-defined holonomy operators ĥ but there is no operator corresponding
to the connection itself. In quantum mechanics, the analog would be for operators
Û(λ) corresponding to the classical functions exp iλx to exist but not be weakly
continuous in λ; the operator x̂ would then not exist. Once the requirement of
weak continuity is dropped, von Neumann’s uniqueness theorem no longer holds and
the Weyl algebra can have inequivalent irreducible representations. The one used
in loop quantum cosmology is the direct analog of full quantum geometry. While
the space A of smooth connections reduces just to the real line R, the space Ā of
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generalized connections reduces to the Bohr compactification R̄Bohr of the real line.
(This space was introduced by the mathematician Harold Bohr (Nils’ brother) in
his theory of almost periodic functions. It arises in the present application because
holonomies turn out to be almost periodic functions of c.) The Hilbert space of states
is thus H = L2(R̄Bohr, dµo) where µo is the Haar measure on (the Abelian group)
R̄Bohr. As in full quantum geometry, the holonomies act by multiplication and the
triad/momentum operator p̂ via Lie-derivatives.

To facilitate comparison with older quantum cosmologies, it is convenient to use
a representation in which p̂ is diagonal. Then, quantum states are functions Ψ(p, φ).
But the Wheeler-DeWitt equation is now replaced by a difference equation:

C+(p) Ψ(p + 4po, φ) + Co(p) Ψ(p, φ) + C−(p) Ψ(p− 4po)(φ) = const ĤφΨ(p, φ)(4.14)

where po is determined by the lowest eigenvalue of the area operator (‘area gap’) and
the coefficients C±(p) and Co(p) are functions of p. In a backward ‘evolution’, given Ψ
at p+4 and p, such a ‘recursion relation’ determines Ψ at p−4, provided C− does not
vanish at p− 4. The coefficients are well-behaved and nowhere vanishing, whence the
‘evolution’ does not stop at any finite p, either in the past or in the future. Thus, near
p = 0 this equation is drastically different from the Wheeler DeWitt equation (4.13).
However, for large p —i.e., when the universe is large— it is well approximated by
(4.13) and smooth solutions of (4.13) are approximate solutions of the fundamental
discrete equation (4.14) in a precise sense.

To complete quantization, one has to introduce a suitable Hilbert space structure
on the space of solutions to (4.14), identify physically interesting operators and an-
alyze their properties. For simple matter fields, this program has been completed.
With this machinery at hand one begins with semi-classical states which are peaked
at configurations approximating the classical universe at late times (e.g., now) and
evolves backwards. Numerical simulations show that the state remains peaked at the
classical solution till very early times when the matter density becomes of the order
of Planck density. This provides, in particular, a justification, from first principles,
for the assumption that space-time can be taken to be classical even at the onset
of the inflationary era, just a few Planck times after the (classical) big-bang. While
one would expect a result along these lines to hold on physical grounds, technically
it is non-trivial to obtain semi-classicality over such huge domains. However, in the
Planck regime near the big-bang, there are major deviations from the classical be-
havior. Effectively, gravity becomes repulsive, the collapse is halted and then the
universe re-expands. Thus, rather than modifying space-time structure just in a tiny
region near the singularity, quantum geometry effects open a bridge to another large
classical universe. These are dramatic modifications of the classical theory.

For over three decades, hopes have been expressed that quantum gravity would
provide new insights into the true nature of the big-bang. Thanks to quantum geom-
etry effects, these hopes have been realized and many of the long standing questions
have been answered. While the final picture has some similarities with other ap-
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proaches, (e.g., ‘cyclic universes’, or pre-big-bang cosmology), only in loop quantum
cosmology is there a fully deterministic evolution across what was the classical big-
bang. However, so far detailed results have been obtained only in simple models. The
major open issue is the inclusion of perturbations and subsequent comparison with
observations.
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